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a b s t r a c t 

Recently a density peaks based clustering algorithm (dubbed as DPC) was proposed to group data by 

setting up a decision graph and finding out cluster centers from the graph fast. It is simple but efficient 

since it is noniterative and needs few parameters. However, the improper selection of its parameter cut- 

off distance d c will lead to the wrong selection of initial cluster centers, but the DPC cannot correct it 

in the subsequent assignment process. Furthermore, in some cases, even the proper value of dc was set, 

initial cluster centers are still difficult to be selected from the decision graph. To overcome these defects, 

an adaptive clustering algorithm (named as ADPC-KNN) is proposed in this paper. We introduce the idea 

of K-nearest neighbors to compute the global parameter d c and the local density ρ i of each point, apply a 

new approach to select initial cluster centers automatically, and finally aggregate clusters if they are den- 

sity reachable. The ADPC-KNN requires only one parameter and the clustering is automatic. Experiments 

on synthetic and real-world data show that the proposed clustering algorithm can often outperform DB- 

SCAN, DPC, K-Means ++ , Expectation Maximization (EM) and single-link. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Clustering is the task to find a set of groups that similar ob-

jects are in the same group but different objects are separated into

different groups. Since clustering can uncover the inherent, poten-

tial and unknown knowledge, principles or rules in the real-world,

it has been widely used in many fields, including data mining,

pattern recognition, machine learning, information retrieval, im-

age analysis and computer graphics [1,8,13,16,24,32,33] . Several dif-

ferent clustering strategies such as the partitioning, the hierarchi-

cal, the density-based, the distribution-based have been proposed

[13,21,24,33] , but no consensus has been reached even on the def-

inition of a cluster [24] . 

The K-means clustering algorithm is the popular one of the par-

titioning methods. It starts with K initial cluster centers and then

assigns each object iteratively to the “closest” cluster by optimizing

an objective function [8,15,21] . However, assigning each object to

its nearest center makes the K-means algorithm fail to detect non-

spherical clusters [15] . K-means ++ [2] provides a method to select

initial cluster centers and improves the accuracy of K-means. 
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Density-based clustering is a nonparametric approach where

he clusters are considered to be high-density areas and separated

rom each other by contiguous regions with low density of ob-

ects [1,7,8,19,24,25,32] . In density-based spatial clustering of appli-

ations with noise (DBSCAN) [8] , points are classified as core ob-

ects or outliers with the density thresholds and the core objects

re assigned to a cluster if they are closely packed together. How-

ver, choosing an appropriate threshold can be nontrivial [8,19] . 

Rodriguez and Laio proposed a clustering by fast search and

nd of density peaks (DPC) algorithm [24] , like DBSCAN and the

ean-shift [31] method, which is able to detect arbitrary clusters

nd needn’ t specify the number of clusters as the partitioning al-

orithms do. The core of the DPC is setting up a decision graph

sing two quantities of each point i : the local density ρ i and the

istance δi from points of higher density. The clustering centers

re selected through the decision graph, and then each of the rest

oints is assigned to the cluster its nearest neighbor of higher den-

ity belongs to. Though DPC is simple and effective, it has some

rawbacks. First, the decision graph will be set up incorrectly if

he parameter cutoff distance d c is not proper. Second, errors will

e propagated in the subsequent assignment process but no way

as taken in the DPC to correct it. Third, initial cluster centers are

elected manually but not automatically, whereas it is very difficult

o get correct selection on some datasets. 

http://dx.doi.org/10.1016/j.knosys.2017.07.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
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Recently, some successors of DPC were proposed trying to

vercome these defects. 3DC [19] clustering selects the-highest-

onfidence objects recursively, differ from DPC which selects all

he possible “anomalous” objects by setting a threshold. However,

n the dividing step, points whose densities are lower than the

hreshold will be looked as outliers and not be processed in succe-

ent procedures, this may omit those clusters with lower density.

PC-KNN [7] introduces the ideas of the k nearest neighbors to

ompute the local density of a point and uses the principal compo-

ent analysis (PCA) [27] to reduce the dimensions of datasets; this

akes the clustering algorithm get better results. Nevertheless, the

lustering process is the same as DPC. So the drawbacks of DPC

till exist in it. Fuzzy weighted K-Nearest Neighbors Density Peak

lustering (FKNN-DPC) [32] proposes a new local density metric

ased on the K-nearest neighbors too, applies two new strategies

or objects assignment, in which the fuzzy method is introduced.

t is more robust than DPC, but the model becomes more complex

nd the algorithm is not automatic too. 

In this paper, we proposed an adaptive density peak clustering

ased on K-nearest neighbors with aggregating strategy, dubbed as

DPC-KNN for simplicity. The ADPC-KNN also introduces the idea

f K-nearest neighbors to compute the local density, proposes a

ew approach to select initial cluster centers, and applies an aggre-

ation strategy to merge clusters if they are density reachable. The

DPC-KNN algorithm has the following new features: (1) A new

ocal density metric is proposed based on the K-nearest neighbors.

t widens the gap of the density between core objects and border

bjects (outliers) making the density peaks to be found efficiently

nd correctly; (2) A new way for initial cluster centers selection is

dopted which ensures that all cluster centers can be found cor-

ectly even on unbalanced datasets whose distribution of classes

resent in a data is not uniform. (3) A new idea of cluster density

eachable is proposed. Clusters which satisfy the density reachable

onditions will be aggregated together. 

The proposed algorithm is performed on synthetic and real-

orld datasets, which are widely used for the performance tests

f clustering algorithms. The results of ADPC-KNN are compared

ith DBSCAN, K–means and DPC in terms of three very popu-

ar benchmarks: F-measure (F1) [23] , Adjusted Mutual Information

AMI) and Adjusted Rand Index (ARI) [30] . The rest of the paper

s organized as follows: Section 2 briefly describes the principle of

PC and does a comparative analysis of local density metrics used

n algorithms presented before. Section 3 makes a detailed descrip-

ion of our adaptive clustering algorithm. Section 4 gives our exper-

ment results. Section 5 draws some conclusions. 

. Related works 

In this section, we will review DPC briefly and give a short anal-

sis to the local density metrics by taking a synthetic dataset as an

xample. 

.1. Density peaks clustering 

The DPC algorithm bases on the assumption that a cluster cen-

er has higher local density than those of its neighbors and a rel-

tively large distance from the other centers. In order to set up a

ecision graph and then find the ideal cluster centers, DPC com-

utes two quantities of each point i : the local density ρ i defined

y (1) and the distance δi from points of higher density defined by

2) [24] . 

i = 

∑ 

j 

χ(d i j − d c ) (1) 

i = min j: ρi <ρ j 
d i j (2) 
Where d ij is the distance between points i and j , and d c is a

utoff distance inputted by users. χ(t) = 1 if t < 0 and χ(t) = 0

therwise. For the point with highest density, its delta is taken as

i = max j (d i j ) . After the density and the delta values of all points

re calculated, DPC plots the decision graph, which consists of the

ollection of points ( ρ i , δi ). One can find out cluster centers in the

pper-right region of the decision graph, which are points with

igh δ and relatively high ρ . With the cluster centers, DPC assigns

he remaining points to the same cluster as its nearest neighbor

f higher density in a single step. As a result, the execution of

PC is efficient. Specifically, for “small” datasets (e.g., for the Sonar

ataset), it is difficult to make a reliable estimate of the densities.

o, DPC adopts another density metric given by (3) to calculate the

ocal densities [24] . 

i = 

∑ 

j 

exp 

(
−

d 2 
i j 

d 2 c 

)
(3) 

However, it has no objective metric to decide whether the

ataset is small or large and clustering by using the two density

etrics will produce very different results. In addition, for small

atasets, the clustering results of DPC can be greatly affected by

he cutoff distance d c even using (3) to calculate the local density

32] . To eliminate the influence from the cutoff distance d c and

ive an uniform density metric for datasets with any size, DPC-

NN and FKNN-DPC introduce the idea of the K-nearest neighbor

nto the local density calculation. 

The local density proposed by DPC-KNN [7] is: 

i = exp 

( 

− 1 

K 

∑ 

j∈ KNN i 

d 2 i j 

) 

(4) 

here K is the input parameter and KNN i is the set of K-nearest

eighbors of point i . 

The local density proposed by FKNN-DPC [32] is: 

i = 

∑ 

j∈ KNN i 

exp(−d i j ) (5) 

Comparing (4) and (5) with (1) and (3) , we can see that to cal-

ulate the local density for point i in DPC-KNN and FKNN-DPC only

eeds K points in KNN i , while it needs the whole dataset in DPC.

f the KNN of each point is known in advance, the complexity of

omputing density of a point by using the former two equations is

n general much less than that by the latter two [32] . 

.2. Density metrics analyses 

The density metrics ( 3–5 ) use Gaussian kernels to calculate

he local density values. We demonstrate the differences between

hese metrics in Fig. 1 : 

Fig. 1 (a) visualizes the Gaussian functions exp(−t) and

xp(− t 2 

σ 2 ) with different σ . The green dash line and the blue

ash dot line are curves of exp(− t 2 

σ 2 ) with σ = 

√ 

2 and σ = 1 ,

espectively. The curve with small σ goes down more quickly

han the curve with a large one. Comparing the red solid line

urve which represents exp(−t) with the curves of exp(− t 2 

σ 2 ) , it

s obviously that values of exp(− t 2 

σ 2 ) are greater than those of

xp(−t) when t < σ 2 but decay faster on the contrary. 

Fig. 1 (b) shows a synthetic data containing 83 points, in which

even points with their indexes are marked by red circles. 

Fig. 1 (c) shows the normalized density values of points in (b),

hich calculated by five different metrics with K = 5 and d c =
 . 0557 . ρ1 

i 
(1) and ρ2 

i 
(3) are used by DPC, ρ3 

i 
(4) and ρ4 

i 
(5) are

sed by FKNN-DPC and DPC-KNN, respectively. The density metric
5 
i 

(8) is proposed in this paper, we will give a detailed description

n Section 3 . 
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Fig. 1. Demonstration of the local density metrics. (a) Gaussian kernel function adopted by metrics; (b) original data used to calculate the local densities; (c) the local 

densities of points in (b), the number of nearest neighbor ( KNN ) is set to 5 and with this value, the cutoff distance d c is computed by (6). 

 

 

 

 

 

 

 

 

 

 

 

 

3

n

 

t  

t  

K  

c  

t  

a

3

In Fig. 1 (b), point {25} is in the core area of the left cluster and

{68} is another core point in the right clusters, whereas points {39,

74, 83} are in their border area, points {7, 48} are intermediates. As

Fig. 1 (c) shows, their local densities calculated by the five metrics

are all coincide with their spacial distributions. Most important of

all, the larger density gap between a point in core area and a point

in another area is gotten, the easier these points can be discrim-

inated and then the more accurate result will the clustering has.

Fig. 1 (c) shows the density gaps δ between point {25} and {39} got-

ten by using the five different density metrics. Obviously, the gaps

got by the metrics ρ3 
i 

(4) and ρ5 
i 

(8) are larger than those got by

the others while the largest one is gotten by our density metrics

ρ5 (8) . 

i 

 

e  

q  

t  
. Adaptive density peak clustering based on K-nearest 

eighbors with aggregating strategy 

There are still some defects in DPC and its successors. To solve

he problems in DPC and its successors, we will improve DPC in

hree aspects by defining a new local density metric based on the

-nearest neighbors, adopting a new way to select initial cluster

enters and aggregating clusters if they are density reachable. In

his section, we will give the essential details of the ADPC-KNN

lgorithm and analyze its complexity theoretically. 

.1. The local density metric of ADPC-KNN 

As we analysed in Section 2 , values of the Gaussian function

xp(− t 2 

σ 2 ) is larger than exp(−t) when t < σ 2 but decay more

uickly than the latter. As for the local density calculation based on

he idea of K-nearest neighbor, the density metric using exp(− t 2 

2 )
σ
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akes points in core areas more discriminable to points in other

reas. This will help the clustering to get more accurate results. So,

e propose a new density metric based on the idea of K-nearest

eighbor by using Gaussian kernel exp(− t 2 

σ 2 ) . For simplifying the

lustering algorithm and making it more adaptable, the parameter

(or d c ) is computed by the input parameter K as follows: 

 c = μK + 

√ 

1 

N − 1 

N ∑ 

i =1 

(
δK 

i 
− μK 

)2 
(6) 

here N is the number of points in the dataset, δK 
i 

is the distance

etween points i and its K th nearest neighbor, which defined by
K 
i 

= max j∈ KNN i 
(d i j ) , and μK is the mean value of δK 

i 
of all points

hich defined by: 

K = 

1 

N 

N ∑ 

i =1 

δK 
i (7) 

In (6) , the second item in the right of the equation is the stan-

ard deviation of distance between each point and its correspond-

ng K th neighbor. It makes the clustering more adaptable and ro-

ust on corrupt datasets, which contain any data that cannot be

nderstood and interpreted correctly by machines. 

Our density metric is defined as: 

i = 

∑ 

j∈ KNN i 

exp 

(
−

d 2 
i j 

d 2 c 

)
(8) 

This definition uses the distribution information of K nearest

eighbors of point i and the parameter d c to calculate its local den-

ity ρ i . It has advantages as the density metrics of FKNN-DPC and

PC-KNN have, but can make points in the core areas more dis-

riminable to points in other areas. 

.2. Terminology used 

Some of the concepts used in DBSCAN and OPTICS are redefined

ere in terms of our requirements. We extend these concepts de-

ned for objects to clusters. 

efinition 1. ( Core-distance of a cluster ): The core-distance of a

luster C u , denoted by σ u , is defined by: 

u = 

1 

| C u | 
∑ 

i ∈ C u 
d cp,i (9) 

he symbol | · |denotes the cardinal of a set, d cp, i denotes the dis-

ance between the center point of the cluster and point i . The core-

istance of a cluster C u is the mean value of distances between the

enter point of the cluster and all points belong to the u th cluster.

efinition 2. ( Border-points-pair set between two clusters ): The

order-points-pair set between two clusters C u and C v , denoted by

 

v 
u , is defined by: 

 

v 
u = 

{
( i, j ) | d i j < min ( σu , σv ) , i ∈ C u , j ∈ C v 

}
(10) 

The set B v u contains all border points between these two clus-

ers. Obviously, B v u is the same as B u v . 

efinition 3. ( Border-density of a cluster ): The border-density of

 cluster C u , denoted by ρB 
u , is defined by: 

B 
u = max (i, j) ∈ B u 

(ρi + ρ j 

2 

)
(11) 

here B u is the union of all border-points-pairs sets between

 u and other clusters in the cluster set, which defined by B u =
 

v � = u B v u . 
efinition 4. ( Density directly-reachable ): A cluster C u is density

irectly-reachable from a cluster C v with respect to border-density

f 

1) B v u � = φ; 

2) ∃ (i, j) ∈ B v u , ρi < ρB 
u & ρ j < ρB 

v . 

It is easy to verify that density directly-reachable is symmetric. 

efinition 5. ( Density reachable ): C u is density reachable to C v if

here exist a clusters path C 1 = C u , C 2 , ���, C n = C v , where each C i +1 

s directly-reachable to C i . 

The density reachable is symmetric and transitive. One can use

athematical induction to prove its veracity. 

.3. The major steps of ADPC-KNN 

Inputs: dataset X , parameter K . 

Output: the cluster C . 

Step 1: Preprocess data like normalizing and reducing dimen-

ions; 

Step 2: Compute the Euclidean distance matrix and calculate

he cutoff distance d c using (6) ; 

Step 3: Calculate ρ i and δi for point i using (8) and (2) , respec-

ively; 

Step 4: Select all points whose δ larger than the cutoff distance

 c as initial cluster centers; 

Step 5: Assign each remaining point to the nearest cluster cen-

er; 

Step 6: Calculate the core distance σ and border density ρB of

ach cluster using (9) and (11) ; 

Step 7: Aggregate all density reachable clusters; 

Step 8: Return the clustering C . 

.4. Complexity analyses of ADPC-KNN 

Suppose the dataset has N points and let | C | denote the num-

er of clusters. In processing of ADPC-KNN, there are three objects

eed storing spaces: First, the matrix storing the distance from

ach point to its K -nearest neighbors has KN entries. Second, each

oint has two attributes as ρ and δ, which needs 2 N spaces. Third,

lusters need spaces to store their border-points-pair sets, core-

istances (| C |), and border-densities (| C |). Although N points can

roduce N 

2 points-pairs, since the number of border points are far

ess than N generally, spaces required by these objects do not ex-

eed O ( N 

2 ). So the space complexity of ADPC-KNN is of the same

rder as DPC in [24] . 

The time complexity of ADPC-KNN depends on the following

spects: (a) computing the distance between points ( O ( N 

2 )); (b)

orting the distance vector of each point ( O ( N 

2 )), of course one

an use quick sort method and then the time complexity of sort-

ng will be down to ( O ( NlogN )); (c) calculating the cutoff distance

 O ( N )); (d) calculating the local density ρ with K -nearest neighbors

 O ( KN )) but K is not great than N ; (e) calculating the distance δ for

ach point ( O ( N 

2 )); (f) Selecting initial cluster centers and assign

ach remaining point to the nearest cluster center ( O ( N 

2 )); (g) cal-

ulating the core distance σ of each cluster ( O ( N )); Because each

ubcluster has no intersection, from (9) we can see the distance

etween the center point of the subcluster and other points in this

ubcluster will be used only once. So the time complexity of cal-

ulating the core distances of all subcluster is ( O ( N )); (h) getting

oder-points-pair sets between all clusters ( O ( N 

2 )); The time com-

lexity will reach to top when the dataset is partitioned into sub-

lusters with same size, in which the time to get a boder-points-

air set between two clusters is ( N 
| C| ) 2 and | C | is greater than 1,

o the time complexity of getting boder-points-pair sets between

ll clusters is O ( N 

2 ); (i) calculating the border density ρB of each

luster ( O ( N )). 
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Table 1 

Synthetic datasets. 

Dataset Instances Dimensions Clusters Sources 

Flame 240 2 2 [11] 

Aggregation 788 2 7 [12] 

Spiral 312 2 3 [4] 

D31 3100 2 31 [29] 

R15 600 2 15 [29] 

Unbalance 6500 2 8 [18] 

A3 7500 2 50 [17] 

Dim-set 1024 < = 1024 16 [10] 

S-set 50 0 0 2 15 [9] 

Birch 10 0,0 0 0 2 100 [34] 
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The above analysis demonstrates the overall time complexity of

ADPC-KNN is O ( N 

2 ), which is same to DPC. 

4. Experiments and results 

In this section, we conducted experiments on synthetic and

real-world datasets, which are commonly used to test the perfor-

mances of clustering algorithms. The performance of ADPC-KNN

was compared with DPC [24] , DBSCAN [8] , K-means ++ [2] , EM

[6] and single-link [22] . Three popular criteria F1 measure (F1)

[23] , adjusted mutual information (AMI) and adjusted rand index

(ARI) [30] were used to evaluate the performances of the above

clustering algorithms. Each benchmark value ranged from −1.0 to

1.0, and the larger it is the better is the clustering. The codes

of DBSCAN and DPC were provided by their authors. The code

of K-means ++ was provided by Laurent Sorber in [28] . EM and

single-link were implemented by using the functions “fitgmdist”

and “clusterdata” defined in Matlab2014a, respectively. 

The synthetic datasets we used in experiments are listed in

Table 1 , which were all downloaded from the website “Cluster-

ing datasets” [18] and come from research published in [4,9–

12,17,29,34] . Table 2 describes the real-world datasets from [20,26] .

There are various parameters the six clustering algorithms

needed setting. ADPC-KNN needs only one parameter K , the num-

ber of nearest neighbors of a point, to be pre-specified. DBSCAN

has two input parameters, the maximum radius Eps and the mini-

mum points MinPts . For DPC, the cutoff distance d c is required and

initial cluster centers are selected manually on the decision graph

which composed of the density ρ and the distance δ. It must be

noted that we only adopted the Gaussian kernel metric in (3) to

calculate local densities since the two density metrics (1) and

(3) have little different efficiency on large-size datasets, but the

metric (3) gets better results on small size datasets. K-means ++ ,

EM and single-link were accepted the true clusters number K as

their input parameters. We implemented the algorithms on each

dataset for a number of times and listed the best result of each

method out. The parameters of ADPC-KNN, DPC, and DBSCAN were

carefully chosen for every implementation. 

Tables 3 and 4 show parameters settings for the six clustering

algorithms and their results in terms of the number of clusters (Cl)

be found, the values of benchmarks as F1, AMI and ARI on datasets

listed in Tables 1 and 2 . The column “Par” of each algorithm is its

parameter we set: For ADPC-KNN, it is parameter K that refers the

number of neighbors of a point; For DPC, it is d c that refers the

cutoff distance. It must be noted that the value of d c we set is the

real cutoff distance but not the percent value as other algorithms

do; For DBSCAN, “Par” have two values separate by “/”, which rep-

resent the parameters Eps and MinPts ; For K-means ++ , EM and

single-link, it refers the true number of clusters. The bold font in-

dicates the best of the results and the bar ’-’ represents there are

no corresponding values. Moreover, the result of each algorithm for
he synthetic datasets is displayed embedded in two-dimensional

pace as different marked and colored plots. 

For real world datasets, it should be noted that we did a few

ata preprocessing on some of them or selected the subset from

hem to do experiments, which are all listed below: 

• All samples with null or uncertain values or duplicates in the

datasets were removed. Such datasets are Water-t, Breast-wpbc,

Echocardiogram, Internet-a and Pima. 

• The Multiple-f dataset consists of features of handwritten nu-

merals (‘0’–‘9’) extracted from a collection of Dutch utility maps

and includes six feature sets (files), we only use the subset

mfeat-fou to test. In this set, each image is represented by 76

Fourier coefficients of the character shapes. 

• The Japanese-v dataset has 2 subsets, we take its ’size_ae.train’

to test here. 

• There are 2 datasets named Waveform listed in Table 2 . The sec-

ond one tagged with ’n’ has additional 19 noise features with

mean 0 and variance 1 compared to the first one. 

• The Olivetti-f dataset has 40 subjects and each subject has 10

different images. We took s31 to s40 subjects to do the experi-

ments and vectorized all images. 

• The SPECT-h datasets were divided into two subsets and we

took the SPECT.train subset to test the algorithms. 

• Each data in Wholesale has 8 attributes. We did clustering pro-

cess according to values of the first six attributes and selected

values of the region attribute as clustering label. 

• All text attributes in the Cylinder-b were removed. 

• Each attribute in Internet-a, Cylinder-b and Spambase was nor-

malized. 

• All text values in Chess were replaced by numbers, such as ’f”

was replaced by 0 and ’t’ by 1 and so on. 

• The attributes no. 1, 10–13 were removed from Echocardiogram

and the second attribute (’still-alive’) was selected as clustering

label. 

• Some preprocessing steps were applied to remove noises, the

artifacts, and the pectoral muscle in a mammogram. Then by

biniarizing the image, the pixels represent potential micro calci-

fications were obtained. The 12 feature vector was constructed

for each of these pixels, which forms the sample space we han-

dle. 

• Noise with a uniform distribution was added to each feature

of the data sets Iris and Pima, respectively, which generate the

two noisy data sets: Iris (noise) and Pima (noise). 

.1. Experiments on synthetic datasets and results analysis 

In this subsection, we show the performance of ADPC-KNN,

PC, DBSCAN, K-means ++ , EM and single-link on 10 synthetic

atasets listed in Table 1 . The result of each algorithm on 8 of these

ynthetic datasets is displayed embedded in two-dimensional

pace as different marked and colored shapes, just as Figs. 2–7

how. Each cluster center achieved by ADPC-KNN or DPC has been

arked out by opposite color to that of points in the same cluster.

n DBSCAN, cluster centers have no meaning because they are cho-

en randomly among those points satisfying the core point condi-

ion, moreover, some points labeled as outlier are not displayed. In

-means ++ , EM and single-link, no cluster center was displayed. 

The Aggregation set has 7 clusters of different size and shapes,

nd two pairs of clusters are connected each other. Fig. 2 shows

DPC-KNN and DPC can find both cluster centers and correct clus-

ers while DPC labels one point wrongly in the adjacent region of

he right two clusters. In Table 3 , the benchmarks data of ADPC-

NN are all 1.00 exactly and their values of DPC are also showed

s 1.00 for data rounding. DBSCAN finds out all apart clusters but

annot partition two different clusters connected each other. K-
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Table 2 

Real-world datasets. 

Dataset Instances Attributes Clusters Dataset Instances Attributes Clusters 

Iris 150 4 3 Breast_wpbc 699 10 2 

Seeds 210 7 3 Multiple-f 20 0 0 76 10 

Olivetti-f 400 92 ∗112 40 Japanese-v 4274 12 9 

Zoo 101 18 7 Sonar 208 60 2 

Page-b 5473 10 5 Libras-m 360 90 15 

Internet-a 3279 1558 2 Pima 768 8 2 

Pen-based 10,992 16 10 Cylinder-b 512 39 2 

Heart-Cleveland 303 14 5 Liver-d 345 7 2 

Waveform (n) 50 0 0 40 3 Waveform 50 0 0 21 3 

Wine 178 13 3 Musk (v1) 476 168 2 

Ecoli 336 8 8 Echocardiogram 132 13 2 

Spambase 4601 57 2 Wholesale 440 8 3 

Monk-3 432 8 2 SPECT-h 267 22 2 

Chess 3196 36 2 Semeion 1593 256 10 

Iris (noise) 150 4 3 Pima (noise) 768 8 2 

Table 3 

Comparison of three benchmarks for 6 clustering algorithms on synthetic datasets. 

Algorithm Par Cl F1 AMI ARI Algorithm Par Cl F1 AMI ARI 

Aggregation A3 

ADPC-KNN 40 7 1.00 1.00 1.00 ADPC-KNN 75 50 0.98 0.98 0.97 

DPC 0.05 7 1.00 1.00 1.00 DPC 0.05 50 0.83 0.90 0.75 

DBSCAN 0.15/9 5 0.85 0.80 0.81 DBSCAN 0.04/8 40 0.82 0.84 0.63 

K-Means ++ 7 7 0.84 0.83 0.76 K-Means ++ 50 50 0.83 0.91 0.85 

EM 7 7 0.81 0.80 0.68 EM 50 – – – –

Single-link 7 7 0.85 0.80 0.80 Single-link 50 50 0.39 0.61 0.32 

D31 R15 

ADPC-KNN 25 31 0.97 0.96 0.94 ADPC-KNN 20 15 1.00 0.99 0.99 

DPC 0.03 31 0.97 0.95 0.93 DPC 0.04 15 1.00 0.99 0.99 

DBSCAN 0.07/3 23 0.71 0.77 0.56 DBSCAN 0.17/3 10 0.73 0.76 0.53 

K-Means ++ 31 31 0.90 0.93 0.86 K-Means ++ 15 15 0.92 0.94 0.89 

EM 31 31 0.81 0.86 0.73 EM 15 15 0.85 0.88 0.78 

Single-link 31 31 0.31 0.43 0.15 Single-link 15 15 0.77 0.79 0.54 

Flame Unbalance 

ADPC-KNN 25 2 1.00 1.00 1.00 ADPC-KNN 120 8 1.00 1.00 1.00 

DPC 0.10 2 1.00 1.00 1.00 DPC 0.01 8 1.00 1.00 1.00 

DBSCAN 0.2/5 2 0.79 0.68 0.27 DBSCAN 0.13/8 8 0.99 0.98 1.00 

K-Means ++ 2 2 0.84 0.39 0.45 K-Means ++ 8 8 0.77 0.85 0.74 

EM 2 2 0.79 0.40 0.32 EM 8 8 0.97 0.95 0.96 

Single-link 2 2 0.69 0.01 0.01 Single-link 8 8 0.78 0.83 0.61 

Spiral Dim1024 

ADPC-KNN 15 3 1.00 1.00 1.00 ADPC-KNN 63 16 1.00 1.00 1.00 

DPC 0.06 3 1.00 1.00 1.00 DPC 0.01 16 1.00 1.00 1.00 

DBSCAN 0.29/5 3 1.00 1.00 1.00 DBSCAN 10/8 16 1.00 1.00 1.00 

K-means ++ 3 3 0.35 −0.01 −0.01 K-Means ++ 16 16 0.96 0.97 0.94 

EM 3 3 0.35 −0.01 −0.01 EM 16 – – – –

Single-link 3 3 1.00 1.00 1.00 Single-link 16 16 1.00 1.00 1.00 

S4 Birch 

ADPC-KNN 160 15 0.80 0.72 0.64 ADPC-KNN 110 100 0.71 0.86 0.61 

DPC 0.04 15 0.80 0.73 0.64 DPC – – – – –

DBSCAN 0.04/8 20 0.53 0.40 0.09 DBSCAN 0.02/9 40 0.37 0.59 0.20 

K-Means ++ 15 15 0.80 0.72 0.63 K-Means ++ 100 100 0.68 0.84 0.58 

EM 15 15 0.64 0.62 0.47 EM 100 – – – –

Single-link 15 15 0.13 0.04 0.00 Single-link 100 – – – –
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eans ++ , EM and single-link cannot recognize all clusters even

ome of them are departed. 

A3 has 50 clusters with 7500 points and D31 has 31 clusters

ith 3100 points. Their clusters distribute randomly on 2-d space

nd some have mild overlapping. R15 has 600 points partitioned

nto 15 clusters, in which one cluster laying in the center of space

s surrounded by seven other clusters closely. Table 3 shows clus-

ering results of the 6 algorithms on the 3 sets, but only the result

n A3 is display in Fig. 3 . The results show ADPC-KNN can find all

luster centers out correctly and assigns almost all points to their

orresponding clusters on these sets. DPC can get similar results

o our algorithm on D31 and R15, whereas it fails to pick all clus-

er centers out on A3. It must be pointed out that the initial clus-

er centers are selected manually from the decision graph when
rocessing the DPC algorithm, but sometimes the complexity of

ataset like A3 makes the selection very difficult, so the number

f clusters will not be able to find out correctly. In all sets we ex-

erimented on, single-link often recognizes clusters close to each

ther as whole while outliers as independent clusters too. DBSCAN

annot find all clusters out. EM gets no result because the process

as aborted for creating ill-conditioned covariance at iteration. 

Flame has two clusters with different shapes. Points are dis-

ributed homogeneously, so most of them have same densities. Un-

alance has 8 clusters with different number of points and densi-

ies. Eah of the left 3 clusters has 20 0 0 points but the right 5 ob-

ects have 100 points each one. As Table 3 show, ADPC-KNN and

PC get the precise clustering results on the two sets. On Unbal-

nce, DBSCAN gets a nearly precise results and EM also works well.
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Table 4 

Comparison of three benchmarks for 6 clustering algorithms on real-world datasets. 

Algorithm Par Cl F1 AMI ARI Algorithm Par Cl F1 AMI ARI 

Iris Iris (noise) 

ADPC-KNN 17 3 0.90 0.79 0.76 ADPC-KNN 14 3 0.74 0.47 0.45 

DPC 0.04 3 0.90 0.79 0.76 DPC 0.04 3 0.74 0.47 0.45 

DBSCAN 0.7/10 2 0.77 0.56 0.55 DBSCAN 0.6/5 2 0.68 0.43 0.36 

K-means ++ 3 3 0.89 0.75 0.73 K-means ++ 3 3 0.70 0.36 0.35 

EM 3 3 0.73 0.57 0.48 EM 3 3 0.71 0.40 0.38 

Single-link 3 3 0.77 0.58 0.56 Single-link 3 3 0.49 0.01 0.00 

Seeds Breast-wpbc 

ADPC-KNN 900 3 0.92 0.71 0.77 ADPC-KNN 15 2 0.75 0.04 0.37 

DPC 0.06 3 0.91 0.72 0.76 DPC 2.0 2 0.58 0.01 −0.02 

DBSCAN 0.85/2 5 0.71 0.44 0.41 DBSCAN 3.8/2 2 0.61 −0.01 −0.01 

K-means ++ 5 3 0.91 0.73 0.77 K-means ++ 2 2 0.66 0.01 0.05 

EM 3 3 0.89 0.72 0.72 EM 2 – – – –

Single-link 3 3 0.50 0.00 0.00 Single-link 2 2 0.75 −0.00 −0.01 

Olivetti-f Multiple-f 

ADPC-KNN 17 10 0.90 0.92 0.86 ADPC-KNN 26 10 0.74 0.68 0.56 

DPC 0.33 10 0.80 0.81 0.71 DPC 0.34 10 0.56 0.55 0.41 

DBSCAN – – – – – DBSCAN 5.2/4 9 0.39 0.25 0.07 

K-means ++ 10 10 0.87 0.87 0.79 K-means ++ 10 10 0.73 0.68 0.58 

EM 10 – – – – EM 3 – – – –

Single-link 10 10 0.72 0.76 0.60 Single-link 3 3 0.18 0.00 0.00 

Zoo Japanese-v 

ADPC-KNN 5 7 0.87 0.86 0.87 ADPC-KNN 46 9 0.65 0.63 0.50 

DPC 0.1 7 0.69 0.69 0.55 DPC 0.14 9 0.58 0.52 0.37 

DBSCAN 2.3/3 7 0.70 0.52 0.32 DBSCAN 0.9/6 10 0.42 0.39 0.07 

K-means ++ 7 7 0.82 0.78 0.79 K-means ++ 9 9 0.48 0.45 0.30 

EM 7 – – – – EM 9 9 0.49 0.51 0.34 

Single-link 7 7 0.65 0.48 0.44 Single-link 9 9 0.20 0.05 0.00 

Page-b Sonar 

ADPC-KNN 900 5 0.86 0.14 0.06 ADPC-KNN 15 2 0.66 0.02 −0.00 

DPC 0.01 5 0.86 0.09 0.03 DPC 0.23 2 0.56 −0.00 −0.00 

DBSCAN 1.0/8 6 0.87 0.16 0.28 DBSCAN 9.2/4 2 0.65 0.02 −0.01 

K-means ++ 5 5 0.77 0.05 −0.00 K-means ++ 2 2 0.55 0.01 0.01 

EM 5 5 0.52 0.22 0.08 EM 2 – – – –

Single-link 5 5 0.86 0.09 0.03 Single-link 2 2 0.67 0.00 0.00 

Internet-a Libras-m 

ADPC-KNN 800 2 0.81 0.07 0.04 ADPC-KNN 6 15 0.50 0.50 0.25 

DPC 0.05 2 0.73 0.00 0.01 DPC 0.23 15 0.47 0.50 0.29 

DBSCAN – – – – – DBSCAN 5.7/4 13 0.38 0.29 0.11 

K-means ++ 2 2 0.72 0.03 −0.08 K-means ++ 15 15 0.50 0.51 0.30 

EM 2 – – – – EM 15 – – – –

Single-link 2 2 0.81 0.00 -0.00 Single-link 15 15 0.16 0.02 0.00 

Pen-based Heart-Cleveland 

ADPC-KNN 150 10 0.74 0.72 0.58 ADPC-KNN 5 5 0.61 0.20 0.34 

DPC 0.16 10 0.73 0.70 0.56 DPC 0.05 5 0.46 0.16 0.08 

DBSCAN 1.3/10 10 0.48 0.44 0.21 DBSCAN 1.2/2 5 0.47 0.01 −0.05 

K-means ++ 10 10 0.67 0.65 0.49 K-means ++ 5 5 0.44 0.18 0.15 

EM 10 – – – – EM 5 – – – –

Single-link 10 10 0.18 0.01 0.00 Single-link 5 5 0.49 0.01 0.02 

Liver-d Cylinder-b 

ADPC-KNN 10 2 0.67 −0.00 −0.00 ADPC-KNN 38 2 0.68 0.00 −0.00 

DPC 0.04 2 0.60 0.00 0.01 DPC 0.01 2 0.58 0.00 0.00 

DBSCAN 1.2/2 2 0.61 0.00 −0.01 DBSCAN 3.2/4 3 0.60 0.00 0.01 

K-means ++ 2 2 0.65 −0.00 −0.01 K-means ++ 2 2 0.58 0.00 0.01 

EM 2 – – – – EM 2 – – – –

Single-link 2 2 0.67 −0.00 −0.00 Single-link 2 2 0.69 −0.00 −0.00 

Pima Pima (noise) 

ADPC-KNN 22 2 0.69 0.01 0.02 ADPC-KNN 29 2 0.69 −0.00 −0.00 

DPC 0.03 2 0.53 −0.00 −0.00 DPC 0.03 2 0.60 0.00 0.01 

DBSCAN 1.4/4 2 0.66 0.04 0.10 DBSCAN 1.0/2 2 0.54 0.02 0/00 

K-means ++ 2 2 0.64 0.03 0.07 K-means ++ 2 2 0.65 0.02 0.07 

EM 2 – – – – EM 2 2 0.65 −0.00 0.01 

Single-link 2 2 0.69 0.00 0.00 Single-link 2 2 0.69 0.00 0.00 

Waveform(n) Waveform 

ADPC-KNN 8 3 0.57 0.25 0.21 ADPC-KNN 30 3 0.60 0.31 0.25 

DPC 0.33 3 0.56 0.13 0.10 DPC 0.24 3 0.61 0.36 0.30 

DBSCAN 4.5/3 4 0.50 0.01 0.00 DBSCAN 2.8/3 2 0.45 0.00 0.00 

K-means ++ 3 3 0.54 0.36 0.25 K-means ++ 3 3 0.54 0.36 0.25 

EM 3 3 0.54 0.18 0.12 EM 3 3 0.84 0.51 0.58 

Single-link 3 3 0.50 0.01 -0.00 Single-link 3 3 0.50 0.01 0.00 

( continued on next page ) 
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Table 4 ( continued ) 

Algorithm Par Cl F1 AMI ARI Algorithm Par Cl F1 AMI ARI 

Wine Musk (v1) 

ADPC-KNN 22 3 0.72 0.41 0.37 ADPC-KNN 142 2 0.67 0.00 -0.00 

DPC 0.01 3 0.72 0.41 0.37 DPC 0.26 2 0.59 0.00 −0.00 

DBSCAN 2.0/7 3 0.67 0.51 0.38 DBSCAN 7.5/8 3 0.63 0.06 0.12 

K-means ++ 3 3 0.71 0.42 0.37 K-means ++ 2 2 0.57 0.02 0.01 

EM 3 3 0.62 0.24 0.23 EM 2 2 0.55 0.00 −0.00 

Single-link 3 3 0.50 0.02 0.01 Single-link 2 2 0.67 0.00 −0.00 

Ecoli Echocardiogram 

ADPC-KNN 5 8 0.64 0.58 0.49 ADPC-KNN 5 2 0.70 0.01 0.06 

DPC 0.1 8 0.56 0.45 0.31 DPC 0.06 2 0.70 0.01 0.06 

DBSCAN 1.3/2 3 0.43 0.06 0.05 DBSCAN – – – – –

K-means ++ 8 8 0.64 0.46 0.41 K-means ++ 2 2 0.64 0.01 0.05 

EM 8 – – – – EM 2 – – – –

Single-link 8 8 0.43 0.06 0.04 Single-link 2 2 0.71 0.01 0.02 

Spambase Wholesale 

ADPC-KNN 10 0 0 2 0.68 0.00 −0.00 ADPC-KNN 6 3 0.66 0.00 −0.03 

DPC 0.01 2 0.67 0.08 0.05 DPC 0.03 3 0.62 −0.00 0.00 

DBSCAN 17.3/1 2 0.68 0.00 0.00 DBSCAN 3.0/1 2 0.66 0.00 −0.01 

K-means ++ 2 2 0.68 0.00 −0.00 K-means ++ 3 3 0.60 −0.00 0.01 

EM 2 – – – – EM 3 3 0.52 0.00 0.02 

Single-link 2 2 0.68 0.00 0.00 Single-link 3 3 0.67 −0.00 −0.01 

Monk-3 SPECT-h 

ADPC-KNN 15 2 0.65 0.08 0.02 ADPC-KNN 5 2 0.66 0.03 0.00 

DPC 0.29 2 0.64 0.06 0.07 DPC 0.22 2 0.64 -0.01 −0.00 

DBSCAN – – – – – DBSCAN 1.3/2 2 0.61 0.08 0.07 

K-means ++ 2 2 0.57 0.01 0.01 K-means ++ 2 2 0.64 0.03 0.04 

EM 2 – – – – EM 2 – – – –

Single-link 2 2 0.66 0.00 0.00 Single-link 2 2 0.66 −0.00 0.00 

Semeion Chess 

ADPC-KNN 16 10 0.21 0.07 0.03 ADPC-KNN 25 2 0.65 0.00 −0.00 

DPC 0.60 10 0.19 0.03 0.01 DPC 0.38 2 0.65 0.00 −0.00 

DBSCAN 8.5/1 12 0.18 0.00 0.00 DBSCAN 2.4/10 2 0.61 0.00 0.00 

K-means ++ 10 10 0.18 0.06 0.03 K-means ++ 2 2 0.51 0.00 0.00 

EM 10 – – – – EM 2 – – – –

Single-link 10 10 0.18 −0.00 0.00 Single-link 2 2 0.67 0.00 0.00 

Fig. 2. Aggregation set. 
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Fig. 3. A3 set. 

Fig. 4. Flame set. 
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On Flame, as Fig. 4 shows, DBSCAN can find all cluster correctly,

but it labels some points as outliers which do not belong to any

cluster and these points are not plotted in the graph. K-means ++
and EM take some points belong to the bottom cluster to the up-

per one. Single-link takes the up-left two points, which are far

away from other points, as one of the two clusters. 

Spiral has 3 clusters which embrace each other and Dim1024

is a high-dimensional dataset and has 16 Gaussian clusters with

1024 points. From the results, we can see the clustering algo-

rithms based on density and single-link get correct results while

K-means ++ and EM are powerless. Because points in Dim sets are
istributed sparsely, EM cannot work. Here again we take Fig. 5 as

n example to clarify this conclusion. 

S4 has 15 Gaussian clusters with heavily overlapping and noise.

rom Table 3 and Fig. 6 , we can see DPC, ADPC-KNN and K-

eans ++ get very similar results, whereas DPC is the best one in

erms of AMI. DBSCAN cannot find all clusters out. EM does a lit-

le better than DBSCAN. Single-link mixes up all connected clusters

nd takes outliers as separated cluster again. 

The Birch2 set is 2-d data with 10 0,0 0 0 points and 100 clusters

hich are distributed along a sin curve. As Table 3 and Fig. 7 show,

ompared the results get by ADPC-KNN and the other 5 algorithms,
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Fig. 5. Spiral set. 

Fig. 6. S4 set. 
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DPC-KNN finds out all clusters correctly and gets the best out-

ome. K-means ++ works very closely to ours. DBSCAN finds only

0 clusters only. Because DPC and single-link need to create matri-

es to store distances between all pare of points, the memory they

eed exceed the capacity of the system we do experiments. EM do

ot work again for the same reason as on A3. 

.2. Experiments on real-world datasets and results analysis 

In this subsection, the performance of each algorithm is bench-

arked in terms of F1, AMI and ARI and shown in Tables 4 . Thirty
eal-world datasets were chosen to test the power of ADPC-KNN

o recognize the clusters on varied data., which are commonly

sed in clustering or classification and all listed in Table 2 . In

hese datasets, twenty-seven come from the UCI machine learn-

ng repository [20] and one is Olivetti face dataset [26] dubbed

s ’Olivetti-f’. For investigating the performances of the six algo-

ithms on imbalance data sets, we chose mammograms from the

IAS database [14] to detect micro calcifications, which is a typ-

cal example for data imbalance problem [3] . Some preprocessing

teps were applied to remove noises, the artifacts, and the pec-

oral muscle in a mammogram. Fig. 8 (a) shows the result of pre-
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Fig. 7. Birch2. 

Fig. 8. Clustering results on an imbalance data set. 
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rocessing on one mommogram in MIAS [14] . The red circle in-

icates the cluster of micro calcifications. The potential micro cal-

ifications were obtained by a biniarization threshold, as Fig. 8 (b)

emnostrated. Then we applied difference of Gaussian (DoG) and

caled symmetric difference of offset Gaussian (DOOG) filters on

he image got in the first step, respectively, which got 9 features

f each pixel. By appending the intensity and the location (x, y) of

ach pixel, we construct a feature vector of each pixel with 12 ele-

ents, which formed a sample the algorithms processing. Fig. 8 (c)–

h) show the results the six methods got. EM and single linkage

utperform other four methods on this data set. The ADPC also can

eparted the micro calcifications from other tissues of the breast,

ut it over-segmented the image. K-means ++ , DPC and DBSCAN

luster micro calcifications incorrectly. 

As shown in Table 4 , in terms of benchmark F1, AMI and ARI,

DPC-KNN outperforms all other 5 algorithms on Breast-wpbc,

livetti-f, Japanese-v, Zoo, Internet-a, Ecoli and Semeion datasets.

e also can see that ADPC-KNN outperforms DPC and DBSCAN

n most of datasets. On Iris, Wine, Echocardiogram and Chess

atasets, ADPC-KNN gets same results as DPC but does slightly

orse than DPC on Waveform. It is also on Waveform that EM

ets the best results. While EM cannot get anything on 21 datasets.

ost of these datasets are composed of data with logical or dis-

rete numerical attributes, which always have finite number of val-

es. Breast-wpbc is a typical case. Pima is a representative of the

thers, the standard deviation of its fifth feature is more than 110

ut the sixth one is less than 1. When EM run on these datasets,

ill-conditioned covariance was created at iteration. On Libras-m

-means ++ does best and ADPC-KNN gets same result at F1 but

s little worse at AMI and ARI. Single-link performs better than

thers on Chess in terms F1 while values of AMI and ARI got by

ll methods are nearly 0. On Olivetti-f, Internet-a, Echocardiogram

nd Water-t datasets, DBSCAN can only find out 1 cluster butt gets

othing on Monk-3. It must be pointed out again that the ini-

ial cluster centers are very difficultly selected on some datasets

hen run DPC. In these cases, the centers and other points are so

losely to each other on the decision graph, inspite of which was

onstructed by ρ and δ attributes of points or by γ = ρ ∗ δ and

ndexes of points. It is also very difficult to choose an appropri-

te combination of input parameters Eps and MinPts before imple-

enting DBSCAN. 

We used the method in [5] to add noise with a uniform distri-

ution to each feature of the datasets Iris and Pima for testing the

erformance of the six algorithms. The number of random noise

dded to each attribute is 10% of all instances and their range is

etween the minimum and the maximum value of the attribute.

ore details can be found in section 4.3.1 in [5] . As Table 4 shows,

he performances of the six algorithms on Iris (noise) are all de-

raded significantly, but on Pima (noise), the degradation is slight. 

. Conclusions and future work 

In this paper, we proposed an adaptive clustering algorithm. An

niform local density metric is defined by using Gaussian kernel

nd limiting the calculation to the K nearest neighbors of a point.

his makes density values of points in the core area have large

ifferences from those on border. By defining the cutoff distance

s a function of the parameter K , ADPC-KNN needs only one in-

ut and become simpler than DPC and DBSCAN. The way finding

nitial cluster centers assures the true centers not be left out. It

ay pick out false centers but this problem was solved in succe-

ent steps. A new concept as cluster density reachable was intro-

uced in this paper. Lastly, ADPC-KNN aggregates those clusters

eet the reachable conditions. Experiments on several synthetic

atasets and real-world datasets show ADPC-KNN outperforms five

ther algorithms referenced in this paper. 
However, the parameter K of our ADPC-KNN is pre-specified by

and and there is no hint to set its value now. More research are

eeded on how to choose the K . 
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